亚洲成精品久久久久|爱豆传媒羞羞答答|免费在线观看吃瓜|啪视频|91麻豆精品国产无毒不卡在线观看|91麻豆成人精品|91制片女主颜值排行榜|爱豆文化传媒 跳动的心|麻豆文化传媒网|自拍偷拍亚洲春色,麻豆传媒张芸熙md0093,麻豆映象传媒官网入口,偷拍自拍高清

當前位置: > 學術(shù)報告 > 理科 > 正文

理科

數(shù)學與信息科學學院系列學術(shù)報告(一)

發(fā)布時間:2020-10-27 瀏覽:次

報告人: 許慶祥教授、鄧春源教授

講座日期:2020-11-02

講座時間:14:40

報告地點:騰訊會議(935 822 979

主辦單位:數(shù)學與信息科學學院

 

報告題目一:Generalized parallel sum of adjointable operators on Hilbert C*-modules

報告人: 許慶祥教授

講座時間:14:40

報告人簡介:

許慶祥, 上海師范大學數(shù)理學院教授,、博士生導師,。19851989年本科就讀于浙江師范大學數(shù)學系,,1989年至1995年研究生就讀于復旦大學數(shù)學研究所,,師從嚴紹宗教授和陳曉漫教授,。1995年到上海師范大學數(shù)學系工作至今,。

近年來主要從事算子理論和矩陣方面的研究工作,,被MathSinNet收錄文章69, 部分文章發(fā)表于SIAM J. Numer. Anal., SIAM J. Matrix Anal. Appl., J. London Math. Soc., J. Operator TheoryLinear Algebra Appl.等期刊上. 目前擔任期刊Advances in Operator TheoryFacta Universitatis, Series: Mathematics and Informatics的編委,。

報告簡介:

We introduce the notion of a tractable pair of operators as well as that of the generalized parallel sum in the setting of adjointable operators on Hilbert C^*-modules. Some significant results about the parallel sum known for matrices and Hilbert space operators are extended to the case of the generalized parallel sum. In particular, a factorization theorem on the parallel sum is proved, and a common upper bound of two positive operators is constructed in the Hilbert C*-module case. The harmonic mean for positive operators on Hilbert C*-modules is also dealt with. This is a joint work with C. Fu, M.S. Moslehian and A. Zamani.

 

報告題目二:On the parallel addition and subtraction of operators on a Hilbert space

報告人: 鄧春源教授

講座時間:16:00

報告人簡介:

 鄧春源,,華南師范大學教授、博士生導師,。20002006年就讀于陜西師范大學數(shù)學與信息科學學院,,師從杜鴻科教授,先后獲理學碩士學位和理學博士學位,。20067月至今在華南師范大學工作,,先后任講師(2006)、副教授(2007),、教授(2011),,博導(2014)。在此期間,,從20129月到20139月在美國威廉瑪麗學院進行學術(shù)訪問,。主要從事算子理論與算子代數(shù)方面的研究工作,在算子矩陣理論,、冪等算子理論,、算子的廣義逆理論等方面取得了一系列研究成果。主持或參加多項省部級自然科學基金,已在國內(nèi)外刊物上發(fā)表論文70余篇,。

報告簡介:

We extend the operations of parallel addition A:B and parallel subtraction A\div B from the cone of bounded nonnegative self-adjoint operators to the linear bounded operators on a Hilbert space. The basic properties of the parallel addition and subtraction were developed for nonnegative matrices in finite-dimensional spaces.However, without suitable restrictions, very little of the preceding theories will hold for bounded linear operators A and B acting in Hilbert space. 

In this talk, generalization to non-selfadjoint operators is considered  and various properties of parallel addition and subtraction are given. The common upper and lower bounds of positive operators by using the parallel sum are given.